Retention of Long-period Gas Giant Planets: Type II Migration Revisited
نویسندگان
چکیده
منابع مشابه
Oligarchic and giant impact growth of terrestrial planets in the presence of gas giant planet migration
Giant planets found orbiting close to their central stars, the so-called ‘hot Jupiters’, are thought to have originally formed in the cooler outer regions of a protoplanetary disk and then to have migrated inward via tidal interactions with the nebula gas. We present the results of N–body simulations which examine the effect such gas giant planet migration has on the formation of terrestrial pl...
متن کاملOrbital Evolution and Migration of Giant Planets: Modeling Extrasolar Planets
Giant planets in circumstellar disks can migrate inward from their initial (formation) positions. Radial migration is caused by inward torques between the planet and the disk; by outward torques between the planet and the spinning star; and by outward torques due to Roche lobe overflow and consequent mass loss from the planet. We present self-consistent numerical considerations of the problem o...
متن کاملMigration of giant planets in planetesimal discs
Planets orbiting a planetesimal circumstellar disc can migrate inward from their initial positions because of dynamical friction between planets and planetesimals. The migration rate depends on the disc mass and on its time evolution. Planets that are embedded in long-lived planetesimal discs, having total mass of 10 − 0.01M⊙, can migrate inward a large distance and can survive only if the inne...
متن کاملType Ii Migration of Planets on Eccentric Orbits
The observed extrasolar planets possess both large masses (with a median M sin i of 1.65 MJ) and a wide range in orbital eccentricity (0 < e < 0.94). As planets are thought to form in circumstellar disks, one important question in planet formation is determining whether, and to what degree, a gaseous disk affects an eccentric planet’s orbit. Recent studies have probed the interaction between a ...
متن کاملThe formation and retention of gas giant planets around stars with a range of metallicities
The apparent dependence of detection frequency of extrasolar planets on the metallicity of their host stars is investigated with Monte Carlo simulations using a deterministic core-accretion planet formation model. According to this model, gas giants formed and acquired their mass Mp through planetesimal coagulation followed by the emergence of cores onto which gas is accreted. These protoplanet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Astrophysical Journal
سال: 2020
ISSN: 1538-4357
DOI: 10.3847/1538-4357/abaab6